Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628554

RESUMO

Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.


Assuntos
Fígado , Preservação de Órgãos , Aldeído-Desidrogenase Mitocondrial , Humanos , Fígado/fisiologia , Transplante de Fígado , Preservação de Órgãos/métodos , Oxigênio , Perfusão/métodos , Succinatos , Transplantes
2.
Antioxidants (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052662

RESUMO

The need to meet the demand for transplants entails the use of steatotic livers, more vulnerable to ischemia-reperfusion (IR) injury. Therefore, finding the optimal composition of static cold storage (SCS) preservation solutions is crucial. Given that ROS regulation is a therapeutic strategy for liver IR injury, we have added increasing concentrations of PEG35 and glutathione (GSH) to the preservation solutions (IGL-1 and IGL-2) and evaluated the possible protection against energy depletion and oxidative stress. Fatty livers from obese Zücker rats were isolated and randomly distributed in the control (Sham) preserved (24 h at 4 °C) in IGL-0 (without PEG35 and 3 mmol/L GSH), IGL-1 (1 g/L PEG35, and 3 mmol/L GSH), and IGL-2 (5 g/L PEG35 and 9 mmol/L GSH). Energy metabolites (ATP and succinate) and the expression of mitochondrial oxidative phosphorylation complexes (OXPHOS) were determined. Mitochondrial carrier uncoupling protein 2 (UCP2), PTEN-induced kinase 1 (PINK1), nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the inflammasome (NLRP3) expressions were analyzed. As biomarkers of oxidative stress, protein oxidation (AOPP) and carbonylation (DNP derivatives), and lipid peroxidation (malondialdehyde (MDA)-thiobarbituric acid (TBA) adducts) were measured. In addition, the reduced and oxidized glutathione (GSH and GSSG) and enzymatic (Cu-Zn superoxide dismutase (SOD), CAT, GSH S-T, GSH-Px, and GSH-R) antioxidant capacities were determined. Our results showed that the cold preservation of fatty liver graft depleted ATP, accumulated succinate and increased oxidative stress. In contrast, the preservation with IGL-2 solution maintained ATP production, decreased succinate levels and increased OXPHOS complexes I and II, UCP2, and PINK-1 expression, therefore maintaining mitochondrial integrity. IGL-2 also protected against oxidative stress by increasing Nrf2 and HO-1 expression and GSH levels. Therefore, the presence of PEG35 in storage solutions may be a valuable option as an antioxidant agent for organ preservation in clinical transplantation.

3.
Transplant Proc ; 54(1): 73-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34893354

RESUMO

Hypothermic static cold storage and machine perfusion strategies remain the clinical standard of care for liver graft preservation. Recently, the protection of the mitochondrial function and the energetic levels derived from it has emerged as one of the key points for organ preservation. However, the complex interactions between liver mitochondrial protection and its relation with the use of solutions/perfusates has been poorly investigated. The use of an alternative IGL-2 solution to Belzer MPS one for hypothermic oxygenated perfusion (HOPE), as well as in static cold storage, introduce a new kind of perfusate to be used for liver grafts subjected to HOPE strategies, either alone or in combination with hypothermic static preservation strategies. IGL-2 not only protected mitochondrial integrity, but also avoided the mixture of different solutions/perfusates reducing. Thus, the operational logistics and times prior to transplantation, a critical factor when suboptimal organs such as donation after circulatory death or steatotic ones, are used for transplantation. The future challenges in graft preservation will go through (1) the improvement of the mitochondrial status and its energetic status during the ischemia and (2) the development of strategies to reduce ischemic times at low temperatures, which should translate in a better transplantation outcome.


Assuntos
Soluções para Preservação de Órgãos , Preservação de Órgãos , Humanos , Fígado , Mitocôndrias , Perfusão
4.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069402

RESUMO

The total damage inflicted on the liver before transplantation is associated with several surgical manipulations, such as organ recovery, washout of the graft, cold conservation in organ preservation solutions (UW, Celsior, HTK, IGL-1), and rinsing of the organ before implantation. Polyethylene glycol 35 (PEG35) is the oncotic agent present in the IGL-1 solution, which is an alternative to UW and Celsior solutions in liver clinical transplantation. In a model of cold preservation in rats (4 °C; 24 h), we evaluated the effects induced by PEG35 on detoxifying enzymes and nitric oxide, comparing IGL-1 to IGL-0 (which is the same as IGL-1 without PEG). The benefits were also assessed in a new IGL-2 solution characterized by increased concentrations of PEG35 (from 1 g/L to 5 g/L) and glutathione (from 3 mmol/L to 9 mmol/L) compared to IGL-1. We demonstrated that PEG35 promoted the mitochondrial enzyme ALDH2, and in combination with glutathione, prevented the formation of toxic aldehyde adducts (measured as 4-hydroxynonenal) and oxidized proteins (AOPP). In addition, PEG35 promoted the vasodilator factor nitric oxide, which may improve the microcirculatory disturbances in steatotic grafts during preservation and revascularization. All of these results lead to a reduction in damage inflicted on the fatty liver graft during the cold storage preservation. In this communication, we report on the benefits of IGL-2 in hypothermic static preservation, which has already been proved to confer benefits in hypothermic oxygenated dynamic preservation. Hence, the data reported here reinforce the fact that IGL-2 is a suitable alternative to be used as a unique solution/perfusate when hypothermic static and preservation strategies are used, either separately or combined, easing the logistics and avoiding the mixture of different solutions/perfusates, especially when fatty liver grafts are used. Further research regarding new therapeutic and pharmacological insights is needed to explore the underlying mitochondrial mechanisms exerted by PEG35 in static and dynamic graft preservation strategies for clinical liver transplantation purposes.


Assuntos
Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Polietilenoglicóis/farmacologia , Alanina Transaminase/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Criopreservação/métodos , Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Fígado/citologia , Masculino , Microcirculação/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Soluções para Preservação de Órgãos/farmacologia , Ratos , Ratos Zucker , Manejo de Espécimes/métodos
5.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596325

RESUMO

Hypothermia may attenuate the progression of ischemia-induced damage in liver. Here, we determined the effects of a brief cycle of hypothermic preconditioning applied before an ischemic/reperfusion (I/R) episode in isolated perfused rat liver (IPRL) on tissue damage and oxidative stress. Rats (male, 200-250 g) were anaesthetised with sodium pentobarbital (60 mg·kg-1 i.p) and underwent laparatomy. The liver was removed and perfused in a temperature-regulated non-recirculating system. Livers were randomly divided into two groups (n = 6 each group). In the hypothermia-preconditioned group, livers were perfused with hypothermic buffer (cycle of 10 min at 22 °C plus 10 min at 37 °C) and the other group was perfused at 37 °C. Both groups were then submitted to 40 min of warm ischemia and 20 min of warm reperfusion. The level of tissue-damage indicators (alanine amino transferase, ALT; lactate dehydrogenase, LDH; and proteins), oxidative stress markers (thiobarbituric acid-reactive substances, TBARS; advanced oxidation protein products, AOPP; and glutathione, GSH) were measured in aliquots of perfusate sampled at different time intervals. Histological determinations and oxidative stress biomarkers in homogenized liver (AOPP; TBARS; nitric oxide derivatives, NOx; GSH and glutathione disulphide, GSSG) were also made in the tissue at the end. Results showed that both damage and oxidant indicators significantly decreased while antioxidant increased in hypothermic preconditioned livers. In addition, homogenized liver determinations and histological observations at the end of the protocol corroborate the results in the perfusate, confirming the utility of the perfusate as a non-invasive method. In conclusion, hypothermic preconditioning attenuates oxidative damage and appears to be a promising strategy to protect the liver against IR injury.


Assuntos
Hipotermia Induzida , Fígado/metabolismo , Perfusão , Isquemia Quente , Animais , Biomarcadores/metabolismo , Fígado/citologia , Masculino , Ratos , Ratos Sprague-Dawley
6.
J. physiol. biochem ; 72(4): 615-623, dic. 2016. graf
Artigo em Inglês | IBECS | ID: ibc-168369

RESUMO

Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O2), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21-22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia (AU)


No disponible


Assuntos
Animais , Masculino , Ratos , Hipóxia/metabolismo , Hipotermia Induzida , Antioxidantes/metabolismo , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/terapia , Aldeídos/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxigênio/efeitos adversos , Carbonilação Proteica , Ratos Sprague-Dawley , Estresse Oxidativo , Oxirredução
7.
J Physiol Biochem ; 72(4): 615-623, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27387890

RESUMO

Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O2), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21-22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia.


Assuntos
Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/terapia , Hipotermia Induzida , Hipóxia/metabolismo , Fígado/metabolismo , Aldeídos/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Glutationa/metabolismo , Hipóxia/patologia , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Estresse Oxidativo , Oxigênio/efeitos adversos , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...